
Warning

This document is not an ISO International Standard. It is distributed for review
and comment. It is subject to change without notice and may not be referred to
as an International Standard

ISO/IEC JTC1/SC22/WG13 XXXXX

DATE: 1998-11-30

Replaces Draft from June 1998

ISO/IEC JTC1 SC22/WG13 (Modula-2)

DOC TYPE: Draft (Technical Report)

TITLE: Interfacing Modula-2 to C

SOURCE:

PROJECT: JTC1.22.15436

STATUS:

ACTION ID:

DUE DATE:

DISTRIBUTION:

MEDIUM: server

NO. OF PAGES: 34

Convenor of ISO/IEC JTC1/SC22/WG13
Dr. Martin Schoenhacker
Telephone: +43 1 58801 4079; Facsimile: +43 1 5042583; e-mail: schoenhacker@eiunix.tuwien.ac.at

Project Editor
Eberhard Enger
e-mail: enger@zi.biologie.uni-muenchen.de

Contents

Foreword
Introduction

1 Scope

1 von 34 30.11.98 10:51

Interfacing Modula-2 to C (Draft) http://www.zi.biologie.uni-muenchen.de/~enger/SC22WG13/im2c.html

2 Normative references
3 Definitions
4 General
4.1 Purpose and justification
4.2 Specific aims
4.3 Exclusions
4.4 Cooperation and liaison
4.5 Preparatory work
5 Rationale
6 Requirements
6.1 Compilation system
6.2 Required modules
7 Guidelines for interfacing C
7.1 Introduction to the guidelines
7.2 Lexis
7.2.1 Notation for identifiers
7.2.2 Notation of literals
7.2.3 Collisions of names
7.3 Mapping of datatypes
7.3.1 Introduction
7.3.2 Representation
7.3.3 Basic integer types
7.3.4 Enumerations
7.3.5 Floating-point types
7.3.6 Pointer types
7.3.7 Structure types
7.3.8 Union types
7.3.9 Array types
7.3.10 Bitfields
7.3.11 Opaque types
7.3.12 Procedure types
7.3.13 Incomplete types
7.3.14 Additional datatypes
7.4 Mapping of constants
7.4.1 Constant declarations
7.4.2 Initialization of structured constants
7.4.3 Additional constants
7.5 Mapping of variables
7.6 Mapping of functions
7.6.1 General considerations

2 von 34 30.11.98 10:51

Interfacing Modula-2 to C (Draft) http://www.zi.biologie.uni-muenchen.de/~enger/SC22WG13/im2c.html

7.6.2 Function headers
7.6.3 Parameter passing
7.6.4 Formal parameters and types
7.6.5 Variable argument lists
7.6.6 Return values
7.6.7 Environment
7.7 Processing of directives and macros
7.7.1 General considerations
7.7.2 Simple text replacements
7.7.3 Function-like macros
7.8 Modularization
Annex A Definition Module C_Types
Annex B Pragmas
B.1 Introduction
B.2 Instructions
B.3 Foreign language bindings
Annex C Further Information
Annex D Glossary
Annex E Participating Individuals
Annex F Bibliography

Foreword

[This page to be provided by ISO CS]

Introduction

This Technical Report provides rules to define interfaces for Modula-2 to call C procedures and to
access C data entities in a portable way.

This Technical Report has been prepared by ISO/IEC JTC1/SC22/WG13, the technical Working
Group for the Modula-2 language.

The motivation for this paper is the need for interfacing important C libraries to Modula-2 programs.
A starting point is the binding of the work on Modula-2 bindings to POSIX [3] within
JTC1/SC22/WG13 (see document D205 [7]).

1 Scope

This Technical Report gives guidelines for defining Modula-2 interfaces to call C procedures and to
access C data objects in a portable way.

This Technical Report is applicable to software engineering in a mixed programming language

3 von 34 30.11.98 10:51

Interfacing Modula-2 to C (Draft) http://www.zi.biologie.uni-muenchen.de/~enger/SC22WG13/im2c.html

environment.

2 Normative references

The following standards contain provisions which, through reference in this text, constitute provisions
of this Technical Report. At the time of publication, the edition indicated was valid. Members of IEC
and ISO maintain registers of currently valid International Standards and Technical Reports.

ISO/IEC 646 : 1991, Information Technology -- ISO 7-bit coded character set for information
interchange.

ISO/IEC 9899 : 1990, Information Technology -- Programming Languages -- C.

ISO/IEC 10514-1 : 1996, Information Technology -- Programming Languages -- Modula-2, Base
Language.

3 Definitions

For the purposes of this Technical Report, the terms and definitions given in ISO/IEC 10514-1:1996
(some of which are repeated below for convenience) apply with the following.

TO DO: environment, linkage system, object code

alignment
A requirement in which objects of a particular data type can be located on storage boundaries
with addresses that are particular multiples of a byte address.

implementation
A particular set of software, running in a particular translation environment under particular
control options, that performs translation of programs, and supports execution of functions in a
particular execution environment.

implementation defined
A term applied to a value that is not defined by this Technical Report, but that requires
definition before the meaning of a program that relies upon that value can be determined.

4 General

4.1 Purpose and justification

Almost all Modula-2 development systems offer a way to interface other programming languages,
especially C. However the solutions offered are very different, and this makes it difficult to write
portable Modula-2 programs with an interface to C libraries, in a way that conforms to
ISO/IEC 10514-1:1996.

Modula-2 programs using interfaces derived from a set of C header files according to the rules of this
Technical Report will be portable between different implementations of the interface to the same C
library.

Because of the large amount of C libraries and the continuing commercial importance of C and C++
there is considerable interest in interfacing to the C language.

Benefits are a much more widespread usage of existing C libraries, an easier mixing of language

4 von 34 30.11.98 10:51

Interfacing Modula-2 to C (Draft) http://www.zi.biologie.uni-muenchen.de/~enger/SC22WG13/im2c.html

systems (e.g. within educational institutions) and the support of the use of compilation systems based
on programming language standards ISO/IEC 9899:1990 and ISO/IEC 10514-1:1996.

4.2 Specific aims

The rules in this Technical Report define the transformation from C header files to Modula-2 pseudo
definition modules. These pseudo Modula-2 definition modules are used to describe the interface. It is
not intended to define a new binding, but to apply the standards for ISO/IEC 11404, Language
Independent Datatypes [5], for Language Independent Procedure Calling , and for ISO/IEC 10182,
Guidelines for Language Bindings [4], to define (concrete) rules for interfacing Modula-2 to C.

In addition, restrictions and constraints of these rules are considered.

4.3 Exclusions

This Technical Report does not define the way Modula-2 implementations implement the access to C
procedures and C data objects, nor does it describe a tool to generate interfaces to them, but a
mapping from C to Modula-2 entities.

4.4 Cooperation and liaison

JTC1/SC22/WG5 (Fortran) is developing an ISO/IEC Technical Report on Interoperability between
Fortran and C [6]. A cooperation between WG5 and WG13 on the subject of interfacing to C will to
be advantageous and first contacts to WG5 have been made to establish a liaison.

4.5 Preparatory work

Since 1992 work has been done within SC22/WG13 on project item JTC 1.22.18.03: Modula-2
binding to POSIX . After the discussions of the very first draft of interfacing POSIX, SC22/WG13
proceeded with drafting a C interface to Modula-2, because all libraries on POSIX are written in C.
At the Oxford meeting, June 1996, an internal paper Guidelines for Modula-2 to C Bindings" [9] was
discussed and it was decided that this document should become a replacement for JTC 1.22.18.03.

5 Rationale

Details of a given C library package (such as POSIX [3] , X11 [14]) is found in

Header files
Man pages (UNIX)
Object code library

In most cases such a library depends on the ubiquitous C standard library and the runtime system
(kernel). These libraries are mostly written in a mixture of C and assembler language. For interfacing
them to Modula-2 programs at least two things are needed:

Definition module(s):
The definition module offers datatypes, constants, variables, and procedures to the application
program in a manner that conforms to the Modula-2 standard. This module acts as a connection
link to the interfaced library: the library entities have to be interfaced with corresponding
Modula-2 entities. A set of rules are given to provide such modules.

Implementation module(s):
The implementation of the correspondend definition modules depends from the compiler and

5 von 34 30.11.98 10:51

Interfacing Modula-2 to C (Draft) http://www.zi.biologie.uni-muenchen.de/~enger/SC22WG13/im2c.html

the system. In some cases no special implementation module is needed. Since standard
Modula-2 defines only a small set of facilities within the system modules, compiler and linker
extensions for interfacing other libraries are unavoidable. However this should be strictly
separated from the definition module (the language) and are hidden to the application program.

NOTE The Standard C programming language used in this Technical Report corresponds to the American National
Standards Institute (ANSI) standard for the C language [1], and the identical standard by the International Organization for
Standardization (ISO) ISO/IEC 9899:1990. This common standard was developed through the joint efforts of the
ANSI-authorized C Programming Language Committee X3J11 and the ISO/IEC committee JTC1/SC22/WG14.

6 Requirements

6.1 Compilation system

The compilation system must be able to support the following features:

The Modula-2 compiler must be able to build C types.
Setting of alignment for structures and arrays.
Setting of enumerations (8-Bit, 16-Bit).
8-Bit characters, signed and unsigned characters.
C calling convention and parameter passing.
Strings:

String literals as pragma
char as SS-Type
Some mechanism for control characters

Switching off upperbound for open arrays.
Handling of functions with variable parameter lists.
Accessing of external (global) C variables.

Some of them may be offered as pragmas; see proposal in annex B.3

6.2 Required modules

In annex A a template of the definition module C_Types is given. An interface has to provide the
required module with concrete values for the implementation dependent values.

TO DO: Should further modules for constants and types declared in C standard library limits.h and
sys/types.h be required or recommended? Rick: It seems to be neccessary.

7 Guidelines for interfacing C

7.1 Introduction to the guidelines

The rules below are an attempt for making a simple interface of C definitions within header files to
Modula-2. To discuss and test these rules, they will be applied to the POSIX C-bindings. They need
to be completed and to be refined.

Notational conventions

The conventions used in this Technical Report are to be interpreted in the same way as in
ISO/IEC 10514-1:1996 with the exception that this document does not include VDM-SL (Vienna
Development Method Specification Language) at this time.

6 von 34 30.11.98 10:51

Interfacing Modula-2 to C (Draft) http://www.zi.biologie.uni-muenchen.de/~enger/SC22WG13/im2c.html

TO DO: layout convention for guidelines, and for "mappings"

7.2 Lexis

7.2.1 Notation for identifiers

Guideline for notation for identifiers

The identifiers for datatypes, constants, and procedures are directly taken and derived from the
header files, thus they may have underscores.

NOTE This is not typical Modula-2 style, but it helps the programmer to find the original names within the widespread
language C literature and documentation.

7.2.2 Notation of literals

Guideline for notation of literals

A C constant literal ending with L or F denotes long or float numerical values and is simply
mapped to a constant expression.

An escape sequence starting with a backslash character \ is mapped to a character constant. The
concatenation operator can be used for adding substrings and single character constants within
the C string.

EXAMPLE 1

 C: ==> Modula-2:

 199009L 199009
 1.40129846e-45F 1.40129846E-45

EXAMPLE 2

 C: ==> Modula-2:

 "\007" 07C (* single char. *)
 "\xF" 17C
 "abcdef ghij\007" "abcdef ghi" + 07C

7.2.3 Collisions of names

Sometimes the same identifier is used for different enitities. E.g.: Within the C header file sys/stat.h
we find a definition for a structure named stat , and a definition for a function named stat :

EXAMPLE 1

 #define _SYS_STAT_H

 struct stat {
 dev_t st_dev;
 ino_t st_ino;
 /* ... */
 };

 extern int stat (const char *name,
 struct stat *buffer);

7 von 34 30.11.98 10:51

Interfacing Modula-2 to C (Draft) http://www.zi.biologie.uni-muenchen.de/~enger/SC22WG13/im2c.html

Guideline for collisions of names

In the case of multiple defined identifiers for different entities within the same scope a short
ending is appended to the type identifier in order to get unique Modula-2 names. Table 1
contains a proposal for endings.

Table 1 Endings for identifiers

Type Ending
array type _arr
pointer type _ptr
procedure type _proc
record type _struct
set type _set
string type _str

EXAMPLE 2

The header file sys/stat.h from example 1 above then becomes:

 C: ==> Modula-2:

 struct stat { TYPE stat_struct = RECORD
 dev_t st_dev; ... st_dev : dev_t; ...
 }; END;

 int stat (PROCEDURE stat (
 const char *name, name : ARRAY OF char;
 struct stat *buffer); VAR buffer : stat_struct);

TO DO: What about mapping of linker names?

TO DO: Should further endings defined for "type", "variable", "module", "enumeration", and/or
others?

7.3 Mapping of datatypes

7.3.1 Introduction

A datatype is a collection of distinct values, a collection of properties of those values and a collection
of characterizing operations on those values. The representation of those values, relationships and
operations may be different between datatypes, as defined in language C and Modula-2. The ideal
case is a complete mapping of a cncrete datatype in language C to a corresponding Modula-2
datatype.

Modula-2 is a strong datatype oriented language; C is not. Thus certain definitions for types have to
be added or completed, in order to conform to Modula-2; see 7.3.14.

In C language types are partitioned into object types (types that describe`objects), function types
(types that describe functions), and incomplete types (types that describe objects but lack information
needed to determine their sizes). An overview of the classification is given by the following list (see
also: Plauger, Brodie: Standard C [13]).

8 von 34 30.11.98 10:51

Interfacing Modula-2 to C (Draft) http://www.zi.biologie.uni-muenchen.de/~enger/SC22WG13/im2c.html

Classification of C types

function types
object types

nonscalar types
struct types
union types
array types

scalar types
arithmetic types

integer types
char, short, int, long
bitfields
enumeration types

floating-point types
float
double
long double

pointer types
pointer to function types
pointer to object types
pointer to incomplete types

incomplete types
struct types
union types
array types
void

C types correspond with Modula-2 datatype according to table 2.

Table 2 Correspondance of C and Modula-2 types

C Type Modula-2 type
function procedure
array array
struct record
union variant record
basic integer BOOLEAN, CHAR, INTEGER
enumeration enumeration or constants
floating-point real number
pointer pointer
pointer to function procedure type
void* SYSTEM.ADDRESS

NOTE In language C an object is defined as: A region of data storage in the execution environment, the contents of which can
represent values. Except for bit-fields, objects are composed of contiguous sequences of one or more bytes, the number,
order, and encoding of which are either explicitly specified or implementation-defined. When referenced, an object may be
interpreted as having a particular type (from ISO/IEC 9899, clause 3).

9 von 34 30.11.98 10:51

Interfacing Modula-2 to C (Draft) http://www.zi.biologie.uni-muenchen.de/~enger/SC22WG13/im2c.html

7.3.2 Representation

TO DO ... The representation of a computational datatype consists of its size in bytes, the
ordering, alignment, ...

Guideline for mapping of datatypes

The mapping has to take into consideration the size of the C datatype. Thus: the representation
(size, alignment, access, ...) of the C datatype and its corresponding Modula-2 datatype must be
equal.

7.3.3 Basic integer types

An important issue of interfacing C libraries is the type size of the used variable, parameter,
component. There are at least two categories, which determine the size of an element. One is the
fixation by an external definition, e.g. X11 protocol with names like CARD8 , CARD16 , CARD32 ,
INT8 , INT16 , INT32 for 1, 2, and 4 Byte long elements etc.. (see: X Interface library Xlib , header
file Xmd.h). The other depends on the implementation and the compilation modes. Thus the most
used integer type int may be 2 or 4 or 8 Bytes long.

Looking at Modula-2 sources, one can find other naming conventions: INTEGER16 , INTEGER32
(Stony Brook Modula-2), or Int8 , Int16 (Gardens Point Modula-2), SHORTINT and SHORTCARD
etc. for integer types.

Guideline for basic integer types

The naming of the basic integer type should reflect these different categories. In order to show
their origin -- from a C header file -- types for Modula-2 are chosen with the same name as in
C. This makes it easy for the programmer to read both C and Modula-2 source code. These
definitions are put into a required module C_Types , see annex A.

In those cases where a new type has to be introduced, the X11 style with its clear convention is
proposed (INT8 etc.).

In ANSI-C there are nine basic integer types with some restrictions on their representation.

Table 3 shows the counterpart between C and Modula-2 names for char -type.

The mapping of char and small integer is not easy, because in C header sources a char is sometimes
used as an element of a string, and sometimes it is simply a byte. This is why there are different
mappings for the same C type.

10 von 34 30.11.98 10:51

Interfacing Modula-2 to C (Draft) http://www.zi.biologie.uni-muenchen.de/~enger/SC22WG13/im2c.html

Table 3 Mapping of char -type

C designations intended use Modula-2 identifiers
char character char
char cardinal unsigned_char
char integer signed_char
char BYTE LOC | BYTE
signed char character char
signed char integer signed_char
signed char BYTE LOC | BYTE
unsigned char character char
unsigned char cardinal unsigned_char
unsigned char BYTE LOC | BYTE

Table 4 Mapping of int -type

C designations intended use Modula-2 identifiers
short integer short
signed short " short
short int " short
signed short int " short
unsigned short cardinal unsigned_short
unsigned short int " unsigned_short
int integer int
signed " int
signed int " int
none " int
unsigned int cardinal unsigned_int
unsigned " unsigned_int
unsigned set PACKEDSET
long integer long
signed long " long
long int " long
signed long int " long
unsigned long cardinal unsigned_long

7.3.4 Enumerations

An enumaration is not actual a distinct type in C (but in C++ enumeration is a distinct type). In
opposite to Modula-2 is possible in C to specify explicitly enumeration constant values.

Guideline for enumerations

If an enumeration in C is declared without enumeration constants, it can be mapped to a

11 von 34 30.11.98 10:51

Interfacing Modula-2 to C (Draft) http://www.zi.biologie.uni-muenchen.de/~enger/SC22WG13/im2c.html

Modula-2 enumeration type. Otherwise the C enumeration is translated to Modula-2 constants.

EXAMPLE 1

 C: ==> Modula-2:

 typedef enum T { c1, c2, ...}; TYPE T = (c1, c2, ...);

EXAMPLE 2

 C: ==> Modula-2:

 typedef enum T { c1=1, c2, ...}; TYPE T = C_Types.int;
 CONST c1 = VAL(T, 1);
 c2 = VAL(T, 2);

7.3.5 Floating-point types

C defines three floating-point types: float , double , and long double . All represent values that are
approximations to real values, to some minimum specified precision, over some minimum specifed
range. Most current inplementations of floating-point can be expected to conform to the specifications
of IEEE 754. Beside of long double , which precision and range can be larger than that of
LONGREAL , a mapping is straightforword.

Guideline for floating-point types

For the three C floating-point types three corresponding Modula-2 types float , double , and
long_double are introduced. They are defined in the definition module C_Types , see annex A.

If long double cannot be represented by C_Types.long_double a warning should be issued.

7.3.6 Pointer types

A pointer type in C describes a data object whose values are the storage addresses that the program
uses to designate functions or data objects of a given type. Some examples from POSIX.1:

EXAMPLE 1

 char *getlogin(void); /* returns a pointer to string */
 extern char **environ; /* pointer variable to array of strings */

Guideline for pointer types

(1) A simple C pointer type is directly mapped to Modula-2 pointer type.

(2) A typical C pointer type defines a pointer to an array, instead of to a single entity. There is
an implicit assumption of a continuous storage of the elements (e.g.: array of char).

(3) Pointers to the special incomplete type void are mapped to addresses.

EXAMPLE 2

 C: ==> Modula-2:

 typedef T1 *T; TYPE T = POINTER TO T1;

(T is the pointer type for a single entity of a base type T1)
Thus the same C definition as above in example 2 is differently mapped, if T points to an array:

12 von 34 30.11.98 10:51

Interfacing Modula-2 to C (Draft) http://www.zi.biologie.uni-muenchen.de/~enger/SC22WG13/im2c.html

EXAMPLE 3

 C: ==> Modula-2:

 typedef T1 *T; TYPE T1_arr = ARRAY [0 .. N-1] OF T1;
 T = POINTER TO T1_arr;

Although the name T is the same as in (1), the datatype is very different! N is an arbitrary integer
value. If it is not known at compile time, MAX(CARDINAL) should be used. Of course at runtime the
upper limit must be fixed.

EXAMPLE 4

The define directive for ptr_t translates to a Modula-2 address type:

 C: ==> Modula-2:

 #define ptr_t void * TYPE ptr_t = SYSTEM.ADDRESS;

See also 7.6.4 and 7.3.13.

7.3.7 Structure types

A structure type describes a data object whose values are composed of sequences of members .

Guideline for structure types

A structure type is mapped to a Modula-2 record type with fixed fields.

The memory image of the complete record type in Modula-2 has to be the same as for the same
type in C. It must have the same alignments and sizes for the component types. There may be
(additional) fill bytes.

Within a fixed field of a record declaration there must be a type denoter.

EXAMPLE

 C: ==> Modula-2:

 typedef struct S{ TYPE T = RECORD
 T1 m1; m1 : T1;
 ... ; ... ;
 } T; END;

Annotation: The structure tag S can be usually omitted in the Modula-2 record definition

7.3.8 Union types

An union type describes a data object whose values are composed of alternations of members .

Guideline for union types

An union type is mapped to variant fields, but tag fields have to be created.

If an union definition occurs within a structure definition the RECORD END pair should not be
omitted.

13 von 34 30.11.98 10:51

Interfacing Modula-2 to C (Draft) http://www.zi.biologie.uni-muenchen.de/~enger/SC22WG13/im2c.html

The memory image of the complete record type in Modula-2 has to be the same as for the same
type in C. Each indexable element must have the same size and therefore the same offset.

EXAMPLE

 C: ==> Modula-2:

 typedef union T{ TYPE T = RECORD
 CASE : CARDINAL OF
 T1 f1; 0: f1 : T1;
 T2 f2; | 1: f2 : T2;
 ... ; | ... ;
 END;
 }; END;

7.3.9 Array types

An array type describes a data object whose values are composed of repetitions of elements .
Identifying individual components is done by indexing.

Guideline for array types

A C array type is mapped to a Modula-2 aray type with an appropiate component type.

EXAMPLE 1

Common case:

 C: ==> Modula-2:

 typedef componenttype T[N]; TYPE T = ARRAY [0 .. N-1]
 OF componenttype;

EXAMPLE 2

Special case: string of characters:

 C: ==> Modula-2:

 typedef unsigned char T[N]; TYPE T = ARRAY [0 .. N-1]
 OF C_Types.char;

7.3.10 Bitfields

A bitfield in C is an integer that occupies a specific number of contiguous bits within a data object
that has an integer type. They can be declared only as members of a structure or of an union. The
equivalent type in ASN.1 [2] is BIT STRING .

Here is an example from Linux : in /usr/include/ieee.h the bits describing the single-precision
floating-point format:

EXAMPLE 1

union i387_float
 {
 float f;
 struct i387
 {
 unsigned int mantissa:23;

14 von 34 30.11.98 10:51

Interfacing Modula-2 to C (Draft) http://www.zi.biologie.uni-muenchen.de/~enger/SC22WG13/im2c.html

 unsigned int exponent:8;
 unsigned int negative:1;
 };
 };

The bitfields mantissa , exponent and negative are forming one single data object, packed into four
bytes. Thus both variants of f and i387 occupies the same storage.

Guideline for bitfields

The bitfield construction can not translated to Modula-2 exactly. One possible mapping could
be the usage of packed sets .

TO DO: The following note needs further discussion (Rick)

NOTE It is recommended to use Modula-2 set types , where set operations are used for integer types in C.

EXAMPLE 2

 C: ==> Modula-2:

 unsigned int v:N v : PACKEDSET OF [0 ... N-1] ;

For example 1 of the floating-point format above, N is 32. Using masking and shifting parts of a
PACKEDSET variable can be extracted and thus all desired operations can be done.

7.3.11 Opaque types

Guideline for opaque types

TO DO: The rules in this clause have to be corrected! (Ed.)

In Modula-2 opaque types are used to hide the internal datatype representation from the
application module(s). In the C language opaque types are fully visible, because the concrete
data representation is given within the header file. The structure varies from implementation to
implementations, of course. Opaque type are normally written in upper case letters. E.g.: DIR
represents the type of a directory stream, used in header file dirent.h . A concrete definition for
DIR looks like, taken from Linux :

EXAMPLE 1

 /* The file information header for the Directory stream type. */
 typedef struct {
 int dd_fd; /* file descriptor */
 int dd_loc; /* offset in buffer */
 int dd_size; /* # of valid entries in buffer */
 struct dirent *dd_buf; /* -> directory buffer */
 } DIR; /* stream data from opendir() */

(1) Explicit type definitions, as in the given example DIR are directly mapped to Modula-2:

EXAMPLE 2

 C: ==> Modula-2:

 typedef struct { TYPE T = RECORD
 T1 m1 m1 : T1;
 ... ; ... ;
 } T; END;

15 von 34 30.11.98 10:51

Interfacing Modula-2 to C (Draft) http://www.zi.biologie.uni-muenchen.de/~enger/SC22WG13/im2c.html

(2) Simple opaque structures are mapped to ... Modula-2 types:

EXAMPLE 3

 C: ==> Modula-2:

 typedef struct S *T; TYPE T = POINTER TO S;
 S = RECORD ... END;

(3) For some further resolved issues with a concrete example about the database library db from
the Berkeley distribution see SC22/WG13 document D228, annex D.4 [9]. (4) The following
structured type is mapped to:

EXAMPLE 4

 C: ==> Modula-2:

 typedef struct { TYPE DBM = RECORD
 int dummy[10]; dummy : ARRAY [0 .. 9]
 OF C_Types.int;
 } DBM; END;

Although DBM might be defined shorter as an array type, both guidelines for structures and
arrays are applied for mapping. This mapping is the only way to have the same internal
representation of the datatype.

7.3.12 Procedure types

In C a function type describes a function whose value is either a data object or an incomplete type
rather than an array type. The incomplete type void indicates that the function returns no result.

Guideline for procedure types

Mapping:

 C: ==> Modula-2:

 typedef T (*F) (); TYPE F = PROCEDURE() : T;

 typedef T (*F) (T1, T2, ...); TYPE F = PROCEDURE(T1, T2, ...) : T;

 typedef void (*P) (); TYPE P = PROCEDURE;

 typedef void (*P) (T1, T2, ...); TYPE P = PROCEDURE(T1, T2, ...);

7.3.13 Incomplete types

An incomplete type in C can be a structure type whose whose members have not been specified, an
union type whose members have not been specified, an array type whose repetition count is not yet
specified, or the type void . It is completed by specifying the missing information elsewhere in the
source text.

Guideline for incomplete types

When ever possible the incomplete types should be completed before applying the other rules.
If not, forward references should be used.

EXAMPLE 1

16 von 34 30.11.98 10:51

Interfacing Modula-2 to C (Draft) http://www.zi.biologie.uni-muenchen.de/~enger/SC22WG13/im2c.html

As an example the definition for the incomplete structure complex is shown:

 struct complex *pc;

this type is completed by declaring:

 struct complex {
 float re, im;
 };

Now it is defined as a struct type with two fields. If there is no declaration given, then suggestive
presumptions should be made for the the components.

EXAMPLE 2

The following example for the type definition of an array variable is incomplete:

 char a[];

It is completed by redeclaring the same name later in the same scope with the repetition count
specified, as in:

 char a[25];

Before mapping is applied, the incomplete types must be completed. For example 2 above, a constant
for the upper bound has to be introduced:

 C: ==> Modula-2:

 typedef componenttype T[N]; TYPE T = ARRAY [0 .. N - 1] OF
 componenttype;

N is an integer constant expression.

EXAMPLE 3

An empty structure type becomes a pointer type or a pointer to an array depending on the intended
usage. If T1 is a simple type, then:

 C: ==> Modula-2:

 typedef struct T1 * T; TYPE T = POINTER TO T1;

or, if T points to an array or list of T1 , then:

 C: ==> Modula-2:

 typedef struct T1 * T; TYPE T1_arr = ARRAY [0 .. N] OF T1;
 T = POINTER TO T1_arr;

EXAMPLE 4

TO DO: An example for void!

7.3.14 Additional datatypes

Guideline for additional datatypes

17 von 34 30.11.98 10:51

Interfacing Modula-2 to C (Draft) http://www.zi.biologie.uni-muenchen.de/~enger/SC22WG13/im2c.html

Instead of using new types for components of record types additional type-identifiers are
introduced.

EXAMPLE

 C: ==> Modula-2:

 typedef struct { TYPE datum = RECORD
 char *dptr; dptr : C_Types.cstring_ptr;
 int dsize; dsize : C_Types.int;
 } datum; END;

The pointer type cstring_ptr is imported from C_Types , see annex A. There is also a string type
cstring with a maximal possible length defined, thus it can be used within all application packages.

7.4 Mapping of constants

7.4.1 Constant declarations

In C there are different ways of declaring constants: constants using macros, using const , and using
enums. Here some examples for compile time macro definitions:

EXAMPLE 1

 #define _ERRNO_H /* implicit: _ERRNO_H = 1 */
 #define EPERM 1 /* operation not permitted */
 #define MAXDOUBLE 1.79769313486231570e+308 /* real number */
 #define NULL ((void*)0) /* null pointer */
 #define _IO_MAGIC_MASK 0xFFFF0000 /* hexadecimal number */

Guidline for definition of constants

(1) The constant declarations are mapped to Modula-2 constant definitions:

 C: ==> Modula-2:

 #define id value CONST id = value;
 #define id ((T)value) CONST id = VAL(T, value);
 #define id ((T)value) CONST id = SYSTEM.CAST(T, value);
 const T id = value CONST id = VAL(T, value);

value can be of type numeric, character, and string. The usage of VAL or CAST for type
transfer depends on the C semantics. An example for a mapping of a macro definition with a
constant expression:

EXAMPLE 2

 C: ==> Modula-2:

 #define BitsPerCBitset CONST BitsPerCBitset =
 (sizeof(unsigned long) * 8) TSIZE(C_Types.unsigned_long) * 8;

 typedef unsigned long CBitset TYPE CBitset = PACKEDSET OF
 [0 .. BitsPerCBitset - 1];

(2) Within a declaration of C enumeration type one can define enumeration constants with
integer values. Thus the mapping of the enumeration may not me contiguous. If the missing
values are easy to survey, the Modula-2 definition should introduce dummies. A mapping for an
example from Plauger, Brodie: Standard C (p. 42) [13] could be look like this:

18 von 34 30.11.98 10:51

Interfacing Modula-2 to C (Draft) http://www.zi.biologie.uni-muenchen.de/~enger/SC22WG13/im2c.html

EXAMPLE nnn

 C: ==> Modula-2:

 enum Hue {black, red, green, TYPE Hue = (black, red, green,
 blue = 4, magenta}; hue_3, blue, magenta);

(3) Mapping of string constants:

EXAMPLE nnn

 C: ==> Modula-2:

 char m[] = "ABC..."; CONST m = "ABC...";

7.4.2 Initialization of structured constants

Guideline for initialization of structured constants

A constant value of an array type, a record type, or a set type can be defined in C in a single
declaration. This is mapped to an explicit type declaration and a constant declaration of a value
constructor.

EXAMPLE 1

 C: ==> Modula-2:

 struct complex { TYPE complex = RECORD
 float re, im; re, im : C_Types.float;
 } neg_one = {-1, 0}; END;
 CONST neg_one = complex
 { -1.0, 0.0 };

EXAMPLE 2

Example for a constant of an array type with definitions of datatype identifiers for the array
constructor:

 C: ==> Modula-2:

 TYPE names_arr = ARRAY [0 .. 4] OF
 ARRAY [0 .. 7] OF C_Types.char;

 static char *names[] = { CONST names = names_arr{
 "skip", "skip",
 "outline", "outline",
 "ra_grid", "ra_grid",
 "dec_grid", "dec_grid",
 "ecliptic" "ecliptic"
 }; };

7.4.3 Additional constants

Guideline for additional constants

Some important and often used constants should be added. These are given in the definition
module C_Types , see annex A.

One of the most used constant in C sources is NULL . The same identifier NULL denotes an
empty string, a pointer to an undefined entity, an integer constant with a zero value, and others.

19 von 34 30.11.98 10:51

Interfacing Modula-2 to C (Draft) http://www.zi.biologie.uni-muenchen.de/~enger/SC22WG13/im2c.html

Because in Modula-2 there are only typed constants, new identifiers for the most important
forms are introduced: C_Types.NULL is a pointer constant, and C_Types.NULL_str is a string
constant.

7.5 Mapping of variables

Guideline for global variables

The generated Modula-2 definition modules may export global variables. If the Modula-2
linkage system is not able to access global variables, procedure functions for getting and setting
values should be introduced.

EXAMPLE

 C: ==> Modula-2:

 extern T v; PROCEDURE Get_v() : T;
 PROCEDURE Set_v(v : T);

Guideline for initialization of variables

The processing of initialization variables defined in a C header file is done during the linkage of
the object files. Therefore no general solution can be offered, because this dependents on the
used software development environment.

7.6 Mapping of functions

7.6.1 General considerations

TO DO: some introduction

7.6.2 Function headers

Guideline for function headers

Functions in C are mapped to procedure functions or to proper procedures depending solely on
the definitions within the C libraries. "Lazy" declarations - like int xyz() - in header files, which
are not ANSI C conformant should be completed with the real parameter list.

7.6.3 Parameter passing

Guideline for parameter passing

The parameter passing conventions should/ have to conform to the same rules as for the
interface library.

7.6.4 Formal parameters and types

Guideline for formal parameters and types

Looking at existing header files, e.g. X/Open SPEC1170 (see [16]), one can find a manyfold of
definitions for function parameters. A knowledge about the usage is necessary to give a correct

20 von 34 30.11.98 10:51

Interfacing Modula-2 to C (Draft) http://www.zi.biologie.uni-muenchen.de/~enger/SC22WG13/im2c.html

mapping from C to Modula-2. Although within the X/Open SPEC1170 there are sometimes the
same kind of definition for value and variable parameter (e.g. int addstr (char *str) and int
getstr(char *str) .

The mapping depends first on the given types in function header and second on the intended
usage.

The C keyword const can be used to decide, whether it is a value or variable parameter.

(1) Simple types

Value Parameter:

EXAMPLE nnn

 C: ==> Modula-2:

 const T p p : T;
 T p p : T;

Variable Parameter:

EXAMPLE nnn

 C: ==> Modula-2:

 T *p VAR p : T;

A formal parameter of type void is treated in a special way:

EXAMPLE nnn

 C: ==> Modula-2:

 void *p p : SYSTEM.ADDRESS
 void **p VAR p : SYSTEM.ADDRESS
 const void *p p : SYSTEM.ADDRESS

Only the referenced values may change, not the reference itself, both for value and for variable
parameters, so no VAR has to be used. See: procedures RawRead and RawWrite in the
Modula-2 Standard Library module IOChan ISO/IEC 10514-1:1996.

(2) Array and set types

Value Parameter:

EXAMPLE nnn

 C: ==> Modula-2:

 const T1 *p p : ARRAY OF T1;
 const T1 * p : ARRAY OF T1;

 const char *p p : ARRAY OF C_Types.char;
 const char * p : ARRAY OF C_Types.char;

Variable Parameter:

EXAMPLE nnn

21 von 34 30.11.98 10:51

Interfacing Modula-2 to C (Draft) http://www.zi.biologie.uni-muenchen.de/~enger/SC22WG13/im2c.html

 C: ==> Modula-2:

 T1 *p VAR p : ARRAY OF T1;

(3)Structure types

Value Parameter:

EXAMPLE nnn

 C: ==> Modula-2:

 struct T p p : T;
 T * p : T;

Variable Parameter:

EXAMPLE nnn

 C: ==> Modula-2:

 struct T *p VAR p : T;
 T *p VAR p : T;

(4)Types implemented as a pointer

Value Parameter:

EXAMPLE nnn

 C: ==> Modula-2:

 typedef ... T ... ; TYPE T = ... ;
 T_ptr = POINTER TO T;

 const T *p /* array */ p : T_ptr;
 const struct T *p p : T_ptr;

In this case a pragma for calling by reference may be needed.

Variable Parameter:

EXAMPLE nnn

 C: ==> Modula-2:

 typedef ... T ... ; TYPE T = ... ;
 T_ptr = POINTER TO T;

 T *p /* array */ VAR p : T_ptr;
 struct T *p VAR p : T_ptr;

Looking at the POSIX function get current working directory , defined in header file unistd.h :
The first parameter is used as an in/out parameter: on input a NULL value can be given (then an
array with the length of size bytes will be allocated. Thus this parameter has to be translated to
a pointer type. The result type is a pointer type too. On output they contain a directory name or
they are NULL .

EXAMPLE nnn

 C: ==> Modula-2:

22 von 34 30.11.98 10:51

Interfacing Modula-2 to C (Draft) http://www.zi.biologie.uni-muenchen.de/~enger/SC22WG13/im2c.html

 char *getcwd PROCEDURE getcwd
 (char *buf, (VAR buf : C_Types.cstring_ptr;
 size_t size); size : unistd.size_t)
 : C_Types.cstring_ptr;

The semantics for getcwd allow a NULL pointer as a valid input value for the parameter buf ,
thus this parameter has to be a pointer type and not an open array parameter.

NOTE The HIGH parameter of an open array parameter should not be given as a further argument in the parameter
list.

7.6.5 Variable argument lists

Guideline for variable argument lists

For mapping of C functions with a variable list of arguments a pragma for C calling convention
is necessary. If such a pragma is not offered within a Modula-2 implementation, a lot of C
library functions can not be used in Modula-2.

See SC22/WG13 document D228, annex D.1 [9] for resolved issues.

7.6.6 Return values

Guideline for return values

Mapping of return values causes much discussions, because most C routines are declared as a
function with sometimes tricky result datatype.

There was a long discussion about the nature of the mapping of return values. From the two
main alternatives, a direct mapping and a mapping by using proper procedures with an
additional variable paramater at the end of the parameter, the direct mapping was chosen. The
strongest argument is that this way is closest to the C source. (The DIN group is also voting
for function procedures).

See SC22/WG13 document D228, annex D.2 [9] for resolved issues.

EXAMPLE

 C: ==> Modula-2:

 T1 fct (T2 p2, ...); PROCEDURE fct (p2 : T2; ...)
 : T1;
 void fct (T2 p2, ...); PROCEDURE fct (p2 : T2; ...);

If the result is omitted in the C source, it depends on the intended usage of the result value,
whether the result type is, for example int or none (proper procedure).

7.6.7 Environment

Guideline for environment

The usage of C libraries in Modula-2 involves a lot of dependencies on the internal behavier of
the routines, e.g. implicit allocation of storage. E.g.: In the operating system Linux the storage
for the function getcwd is automatically resized by calling the malloc function. This is an
implementation dependent behavior for this POSIX version, and may not be true for other
UNIX systems. Another example from the X11 library:

23 von 34 30.11.98 10:51

Interfacing Modula-2 to C (Draft) http://www.zi.biologie.uni-muenchen.de/~enger/SC22WG13/im2c.html

EXAMPLE

 char **XListFonts(display, pattern,
 maxnames, actual_count_return)

The client should call function XFreeFontNames when finished with the result to free the
memory (from: Scheifler et al.: X Window System [14]) .

7.7 Processing of directives and macros

7.7.1 General considerations

The processing of macros gives a great power to the C language: including other source files,
conditional compilation, redefinitions of already declared constants and functions etc.

The #define directive performs a text substitution in the C source file. It has two main uses: simple
text replacement and creation for function-like macros.

Some examples for macros from C:

EXAMPLE nnn

 Macro ANSI C definition Traditional C definition
 ----- ---- - ---------- ----------- - ----------
 PTR `void *' `char *'
 LONG_DOUBLE `long double' `double'
 CONST `const' `'
 VOLATILE `volatile' `'
 SIGNED `signed' `'
 PTRCONST `void *const' `char *'

7.7.2 Simple text replacements

Guideline for macro constants

A macro definition, using the #define directive becomes a constant declaration in Modula-2.

Examples from errno.h :

EXAMPLE

 C: ==> Modula-2:

 #define EPERM 1 CONST EPERM = 1;
 #define ENOENT 2 CONST ENOENT = 2;

See also guidelines Definition of Constants in clause 7.4.

7.7.3 Function-like macros

In C, predefined functions with default values provided for parameters are often used. Some
Examples for such macros:

EXAMPLE 1

 #define SHORTBITS BITS(short)
 #define INTBITS BITS(int)

24 von 34 30.11.98 10:51

Interfacing Modula-2 to C (Draft) http://www.zi.biologie.uni-muenchen.de/~enger/SC22WG13/im2c.html

 #define S_ISDIR(mode) ((mode) & S_IFMT) == S_IFDIR) /* sys/stat.h */

 #define XtUnspecifiedWindow ((Window)2) /* X11/Intrinsic.h */
 #define XtNumber(arr) ((Cardinal) (sizeof(arr) / sizeof(arr[0])))
 /* X11/Intrinsic.h */
 #define XtNiconName ((char*)&XtShellStrings[0] /* X11/Shell.h */
 #define ConnectionNumber(dpy) ((dpy)->fd) /* X11/Xlib.h */

TO DO: some further explanations

Guideline for macro functions

There are no general rules for mapping macro functions to Modula-2 constructs, because for
each given macro, semantic actions have to be defined within an implementation module.

Example: Given the simple macro function S_ISDIR from sys/stat.h

EXAMPLE 2

 C: ==> Modula-2:
 definition module:
 FROM ... IMPORT st_mode;

 #define S_ISDIR(mode) PROCEDURE S_ISDIR(mode : st_mode)
 ((mode) & S_IFMT) == S_IFDIR) : int;

 implementation module:
 FROM ... IMPORT
 S_IFMT, S_IFDIR, st_mode;

 PROCEDURE S_ISDIR(mode : st_mode)
 : int;
 BEGIN
 IF (mode * S_IFMT) = S_IFDIR THEN
 RETURN -1;
 ELSE
 RETURN 0;
 END (* IF *);
 END S_ISDIR;

7.8 Modularization

Names, circumreference of C header files depends much on history and the state of programming
style. Newer libraries, such as X11, are much more structured than the older ones (stdlib.h). Some
header files have only few definitions.

Recommendation:

The Modula-2 binding should be clearly arranged.

Guideline for module structuring

Recommendation: The set of definition module for a given C library should be layered and
should reflect the origin. E.g. for the ANSI C standard library one single definition module
could be introduced (CStdLibrary) or could be split in corresponding definition modules, the
first chararaters of the module names should start with C_ (e.g.: C_stdlib , C_dirent , ...) to
indicate that it is based on a C library definition.

25 von 34 30.11.98 10:51

Interfacing Modula-2 to C (Draft) http://www.zi.biologie.uni-muenchen.de/~enger/SC22WG13/im2c.html

Annex A

(normative)

Definition Module C_Types

In order to make the identifiers more readable, the full C names are used and concatenated by an
underscore (e.g.: C unsigned long becomes unsigned_long).

In order to have consistent name style within this definition module the type names cstring and
cstring_ptr start with small letters. However NULL and NULL_str are written in capital letters, as
they are used in C sources.

The interface to C_Types behaves as if the following were its definition module:

DEFINITION MODULE C_Types;

(*
 * Required module for basic types and constants.
 *)

TYPE
 char = <implementation-defined CHARACTER-TYPE>;
 (* sizeof(char) = SIZE(char) *)

 signed_char = <implementation-defined INTEGER-TYPE>;
 (* sizeof(signed char) = SIZE(signed_char) *)

 unsigned_char = <implementation-defined CARDINAL-TYPE>;
 (* sizeof(unsigned char) = SIZE(unsigned_char) *)

 short = <implementation-defined INTEGER-TYPE>;
 (* sizeof(short) = SIZE(short) *)

 unsigned_short = <implementation-defined CARDINAL-TYPE>;
 (* sizeof(unsigned short) = SIZE(unsigned_short) *)

 int = <implementation-defined INTEGER-TYPE>;
 (* sizeof(int) = SIZE(int) *)

 unsigned_int = <implementation-defined CARDINAL-TYPE>;
 (* sizeof(unsigned int) = SIZE(unsigned_int) *)

 long = <implementation-defined INTEGER-TYPE>;
 (* sizeof(long) = SIZE(long) *)

 unsigned_long = <implementation-defined CARDINAL-TYPE>;
 (* sizeof(unsigned long) = SIZE(unsigned_long) *)

 float = <implementation-defined REAL-TYPE>;
 (* sizeof(float) = SIZE(float) *)

 double = <implementation-defined LONGREAL-TYPE>;
 (* sizeof(double) = SIZE(double) *)

 long_double = <implementation-defined extented REAL-TYPE>;
 (* sizeof(long double) = SIZE(long_double) *)

CONST
 cstring_max = <implementation-defined CARDINAL-constant>;

TYPE

26 von 34 30.11.98 10:51

Interfacing Modula-2 to C (Draft) http://www.zi.biologie.uni-muenchen.de/~enger/SC22WG13/im2c.html

 cstring = ARRAY [0 .. cstring_max] OF char; (* 0C terminated *)
 cstring_ptr = POINTER TO cstring;

CONST
 NULL = SYSTEM.MAKEADR(<implementation-defined ADDRESS constant>);
 (* must have the C representation of NULL *)

VAR
 NULL_str [NULL] : ARRAY [0 .. 0] OF char;
 (* should be treated as a constant! *)

END C_Types.

Annex B

(informative)

Pragmas

B.1 Introduction

This annex contains a suggested syntax for pragmas. It was first presented by DIN in a report [8]. It
includes a proposal for assignment, conditional compilation, predefined identifiers and related stuff;
using the directive delimiters <* and *> , see clause 5.5.3, Source Code Directives of the Modula-2
base language standard ISO/IEC 10514-1:1996.

Our main goal for the definition of syntax and semantics for the pragmas is to allow the programmer
to use the same pragmas on various compilers and platforms; the goal is to get a warning if the
specific compiler can not handle the pragma at all or as it is expected. This requests a standardized
syntax and semantics that allows the compiler to detect whether or not it has to know a name used in
a pragma. Additionally, standard names have to be provided for pragmas common to (nearly) all
compilers.

B.2 Instructions

A set of standard names should control the detection of the Modula-2 standard exceptions defined in
the system module M2EXCEPTION (ISO/IEC 10514-1:1996, clause 7.5.1):

IndexException , RangeException , CaseSelectException , InvalidLocation , FunctionException ,
WholeValueException , WholeDivException , RealValueException , RealDivException ,
ComplexValueException , ComplexDivException , ProtException , SysException , CoException ,
ExException .

These names, if known by a compiler, shall represent values defining whether or not code shall be
generated for the detection of the specified exception.

The following standard names should also be provided:

StackCheck
generate stack tests

PragmaCheck
generate warnings for unrecognized pragmas

ConformantMode

27 von 34 30.11.98 10:51

Interfacing Modula-2 to C (Draft) http://www.zi.biologie.uni-muenchen.de/~enger/SC22WG13/im2c.html

assures that all requirements of ISO/IEC 10514-1:1996 are fulfilled
DebugMode

generate debug information .

The assignment of values to these names is done in the form of assignments with the arguments TRUE
or FALSE .

EXAMPLE 1: generate code for index check:

 <*ASSIGN(IndexCheck,TRUE)*>

EXAMPLE 2: switch off conformant mode (no warranty!)

 <*ASSIGN(ConformantMode,FALSE)*>

If the compiler does not know the identifier or cannot provide the desired function (e.g. cannot
generate code for a specific check, check is always done by hardware and cannot be turned off) it
shall produce a warning.

The more general form of this assignment - especially for non-boolean values - shall be

 "ASSIGN" "(" var "," value ")"

where var is an identifier known to the compiler and value something that the compiler can assign to
the identifier. This would allow something like

EXAMPLE 3

 <*ASSIGN(Optimization,"4")*>

given that the compiler knows "Optimization" and can assign the value "4" to this variable.

Alternatively, maybe the compiler knows something like

EXAMPLE 4

 <*ASSIGN(Optimization,"Speed")*>

If one of these conditions does not hold, the compiler shall produce an error message.

The statement

EXAMPLE 5

 var "(" value ")"

shall be equivalent to

EXAMPLE 6

 "ASSIGN" "(" var "," value ")"

Setting of variables from the command line or other parts of the Environment is done by

 "ENVIRON" "(" var "," default ")"

If an environment, e.g. a commandline, exists and a value is assigned to the variable var , then var
shall be set to this value. Otherwise the contents of default shall be used. An implicit ASSIGN is done
by the compiler for each predefined variable.

28 von 34 30.11.98 10:51

Interfacing Modula-2 to C (Draft) http://www.zi.biologie.uni-muenchen.de/~enger/SC22WG13/im2c.html

Two pragmas (PUSH / POP) shall allow to save the state of all pragmas in effect on a stack and
restore this state later.

If the compiler allows conditional compilation, new variables are defined by

 "DEFINE" "(" var "," value ")"

The identifier var must not be already known (or an error message is produced), that is, one cannot
override existing variables (known to the compiler or defined earlier). Once defined, the value can be
changed with ASSIGN .

The condition pragmas shall have the form:

 "IF" boolean_expression "THEN"
 "ELSIF" boolean_expression "THEN"
 "ELSE"
 "END"

boolean_expression is either the comparison of an already known variable with a value or the test of a
variable with a boolean value. Only equality and inequality are provided for comparison. NOT may be
used in testing a boolean variable.

Example of a conditional compilation:

EXAMPLE 7

 <*DEFINE(CpuType,"Intel")*>

 <*IF CpuType = "Intel" THEN*>
 FROM IntelPrimitives IMPORT Intr, Registers;
 <*ELSIF CpuType = "Motorola" THEN*>
 FROM MotorolaPrimitives IMPORT Trap, Registers;
 <*END*>

Some properties of pragmas:

Pragma sequences within "<*" and "*>" are allowed.
the pragmas are separated by ";".
WhiteSpace in pragmas is allowed and skipped.
Pragmas within comments are not recognized.
The empty pragma exists.

Collected syntax in EBNF:

 pragma = "<*" single_pragma {";" single_pragma } "*>" .
 single_pragma = [assignment | environment | definition | save_restore |
 condition] .
 assignment = known_variable "(" value ")" |
 "ASSIGN" "(" known_variable "," value ")" .
 environment = "ENVIRON" "(" unknown_variable "," default_value ")" .
 definition = "DEFINE" "(" unknown_variable "," value ")" .
 save_restore = "PUSH" | "POP" .
 condition = ifpart | elsifpart | elsepart | endifpart .
 ifpart = "IF" boolean_expression "THEN" .
 elsifpart = "ELSIF" boolean_expression "THEN" .
 elsepart = "ELSE" .
 endifpart = "END" .
 boolean_expression = ["NOT"] known_boolean_variable |
 value ("=" | "<>" | "#") value .
 known_variable = identifier .

29 von 34 30.11.98 10:51

Interfacing Modula-2 to C (Draft) http://www.zi.biologie.uni-muenchen.de/~enger/SC22WG13/im2c.html

 unknown_variable = identifier .
 known_boolean_variable = identifier .
 identifier = any legal Modula-2 identifier .
 value = any legal Modula-2 string | "TRUE" | "FALSE" |
 known_variable .

List of predefined identifiers for exceptions:

CaseSelectException
CoException
ComplexDivException
ComplexValueException
ExException
FunctionException
IndexException
InvalidLocation
ProtException
RangeException
RealDivException
RealValueException
SysException
WholeDivException
WholeValueExcption

The following identifiers assumed to be useful (these names especially are open to discussion):

AssignmentCheck : check assignments
ComplexCheck : check complex arithmetics
ConformantMode : disable compiler-specific extensions
NilCheck : check dereferencing of NIL pointer
Optimization : control optimization
RealCheck : check real arithmetics
StackCheck : check for stack overflow
SubscriptCheck : check array indices
VariantCheck : check variant record tags
WholeCheck : check whole arithmetics

Annotation

- A conditional compilation clause consists of an opening ifpart , any number of elsifpart s, an
optional elsepart , and a terminating endifpart . Nested conditional compilation clauses are allowed. If
the boolean_expression of the ifpart is true, the text until the next corresponding elsifpart , elsepart ,
or endifpart is fully interpreted. The remaining text until the corresponding endifpart is skipped.
Otherwise, the text following the ifpart is skipped. If the next condition part is an elsifpart , its
boolean_expression is tested and so on. If no condition holds, the text following the elsepart is
interpreted. "Skipping" of text means that no interpretation is done except recognition of comments
and nested condition clauses. That is, the pragma syntax in the skipped text is checked, though the
meaning of the pragmas is not recognized.

EXAMPLE 8

 <*IF condition THEN; StackCheck(TRUE)*>

is valid.

30 von 34 30.11.98 10:51

Interfacing Modula-2 to C (Draft) http://www.zi.biologie.uni-muenchen.de/~enger/SC22WG13/im2c.html

- Rational:

no number literals are allowed for the sake of simplicity, because no arithmetics are allowed.

B.3 Foreign language bindings

Considering the binding to foreign languages - especially C - we came to the following conclusions
which could be seen as a separate report extending this paper and defining a "set of rules" to make the
binding portable across different targets and compilers.

The predefined identifier Foreign exists, it is found before the DEFINITION of the definition module;
it's sort of a container for various aspects of the binding. Assigning a value to Foreign should imply
the following wherever applicable:

whether an implementation module has to be provided (Implementation)
whether an module initialization part has to be generated (ModuleInit)
whether the upper bound of an array parameter is to be pushed to the stack (PushHigh)
whether RECORDs are pushed as value or as reference (RecordAsRef)
a common rule for the modification of linker names (e.g. prefix every global name with a "_")
alignments (alignment classes) for types, parameters, records and arrays (AlignParameter)
calling convention (parameter order on the stack, who removes the parameters) (Reversed)

For every aspect there should exist a single pragma that allows fine grain control over every aspect of
the interface. The use of Foreign should be sufficient in all standard cases.

In addition to that, the following pragma shall exist:

 "EXTERNAL" "(" identifier "," value ")"

This shall have the meaning of replacing the textual representation of the value to the Modula-2
identifier identifier for the linker, so that the linker is able resolve this reference and the programmer
is able to use Modula-2 names for externally defined functions and variables.

If these foreign language extensions are supported the collected syntax changes as follows:

 single_pragma = [assignment | environment | definition | save_restore |
 condition | external] .
 external = "EXTERNAL" "(" identifier "," value ")" .

To the list of predefined identifiers the following is appended:

Foreign
Implementation
ModuleInit
PushHigh
RecordsAsRef
AlignParameter
Reversed

Annex C

(informative)

31 von 34 30.11.98 10:51

Interfacing Modula-2 to C (Draft) http://www.zi.biologie.uni-muenchen.de/~enger/SC22WG13/im2c.html

Further Information

[To be removed in the final version]

Institutions and Companies, Modula-2 Systems

JTC1/SC22/WG13 FTP server
Updated versions of several WG13 documents are available by anonymous ftp from
ftp://dutiba.twi.tudelft.nl/pub/wg13

Gardens Point Modula-2
gardens point modula (gpm) is an implementation of Modula-2 for 32-Bit platforms since 1989,
devopeled by John Gough and co-workers at Queens University of Technology, see URL:
http://www.fit.qut.edu.au/CompSci/PLAS/GPM/ . The implementation of gpm is based on the
ISO standard for Modula-2. The long used macro preprocessor mpp [10] provides simple
facilities for macros expansion and conditional file extraction. The source is public domain and
can be found at the ftp-site: ftp://ftp.fit.qut.edu .

MOCKA
MOCKA (MOdula Compiler KArlsruhe [12]) is the Modula-2 system developed by the GMD
research laboratory Karlsruhe, Germany (Gesellschaft für Mathematik und Datenverarbeitung,
German national computer science institute). - For more information see URL:
http://i44s11.info.uni-karlsruhe.de/~modula/ .

mtc
mtc translates Modula-2 programs into readable C code. It was developed by Matthias Martin
and J. Grosch, University of Karlsruhe, Germany; [11]. The source code is public domain.

Stony Brook Modula-2
Stony Brook compiler is based on ISO Modula-2. An unsupported tool H2P is offered, which
converts C headers to Turbo Pascal units or Modula-2 definition modules.

xTech
The tool H2D [15] is created by xTech to translate C header files to Modula-2 definition
modules. It is available for most popular platforms, including Linux, MS-DOS, OS/2, Windows
95, Windows NT. See URL: http://www.xds.su/xds/xds.html .

Annex D

(informative)

Glossary

The following explanations of terms are given as an aid to the reading of this Technical Report.

POSIX
Portable Operating System Interface (POSIX)

VDM-SL
Vienna Development Method Specification Language

Annex E

32 von 34 30.11.98 10:51

Interfacing Modula-2 to C (Draft) http://www.zi.biologie.uni-muenchen.de/~enger/SC22WG13/im2c.html

(informative)

Participating Individuals

This Technical Report was prepared by Eberhard Enger, as project editor on behalf of ISO/IEC
JTC1/SC22/WG13. The following individuals participated in the process as the nominated experts

ISO/IEC JTC1/SC22/WG13:
Frank Bender Germany
Eberhard Enger Germany
John Gough Australia
Elmar Henne Germany
Keith Hopper New Zealand
Herbert Klaeren Germany
John Lancaster United Kingdom
David Lightfood United Kingdom
Cornelius Pronk Netherlands
Wolfgang Redtenbacher Germany
Martin Schleußer Germany
Martin Schönhacker Austria
Richard J. Sutcliffe Canada
Albert Wiedemann Germany
Mark Woodmann United Kingdom

The assistance of the following individuals is also gratefully acknowledged:
Ulrich Kaiser Germany
Holger Kleinschmidt Germany

Annex F

(informative)

Bibliography

[1]
ANSI X3.159-1989, Information systems -- Programming language -- C .

[2]
ISO/IEC 8224, Specification of Abstract Syntax Notation One (ASN.1) .

[3]
ISO/IEC 9945-1:1990, Information Technology -- Portable Operating System Interface
(POSIX) -- Part 1: System Application Program Interface (API) .

[4]
ISO/IEC TR 10182:1994, Information Technology -- Guidelines for Language Bindings .

[5]
ISO/IEC 11404:1996, Information Technology -- Programming languages, their environments
and system software interfaces -- Language-independent datatypes .

33 von 34 30.11.98 10:51

Interfacing Modula-2 to C (Draft) http://www.zi.biologie.uni-muenchen.de/~enger/SC22WG13/im2c.html

[6]
ISO/IEC JTC1/SC22/WG5 N1277, Interoperability of Fortran and C. Technical Report
defining extensions to ISO/IEC 1539-1:1997 , March 1997 . First Draft PDTR .

[7]
ISO/IEC JTC1/SC22/WG13 D205, Information Technology -- Programming Language --
Modula-2 Binding: POSIX . June 1994 (Author: Keith Hopper) .

[8]
ISO/IEC JTC1/SC22/WG13 D224, A Report on Pragmas . November 1995 (Author: Bernhard
Cygan et al.) .

[9]
ISO/IEC JTC1/SC22/WG13 D228, Guidelines for Modula-2 to C Bindings (Draft) . March
1996 (Ed.: Eberhard Enger) .

[10]
N.N., Gardens Point Modula Release Notes . mpp supplement . Brisbane: Queensland
University of Technology, January 1991 .

[11]
Matthias Martin, Entwurf und Implementierung eines Übersetzers von Modula-2 nach C .
Universität Karlsruhe, February 1990 .

[12]
Helmut Emmelmann, Jürgen Vollmer, GMD Modula System MOCKA. User Manual
. Universität Karlsruhe, April 1994 .

[13]
P.J. Plauger, Jim Brodie, Standard C. A Reference . New Jersey: Prentice Hall PTR, 1996 .
ISBN: 0-13-436411-2 (Note: HTML Hypertext on diskette included) .

[14]
Robert W. Scheifler, James Gettys, and Ron Newman, X WINDOW SYSTEM. C Library and
Protocol Reference . Bredford, Massachusetts: Digital Press, 1988 .

[15]
N.N., XDS Family of Products. H2D User's Guide . xTech Ltd., 1996 .

[16]
Spec 1170 Volume 1, X/Open Snapshot. System Interfaces and Headers. Issue 4, Version 2 .
X/Open Company Ltd., April 1994 (Note: issue S418 published solely in electronic form) .

This draft uses the ITSIG exchange DTD (version 0.93, 1998) with small modifications for the table
of contents, the title page, and this last page.

[THIS PAGE TO BE REPLACED BY ISO CS]

34 von 34 30.11.98 10:51

Interfacing Modula-2 to C (Draft) http://www.zi.biologie.uni-muenchen.de/~enger/SC22WG13/im2c.html

